Programming in Haskell Aug-Nov 2015

LECTURE 21

NOVEMBER 3, 2015

S P SURESH
Chennal Mathematical Institute

Arrays in Haskell

* Lists store a collection of elements
* Accessing the i-th element takes i steps
* Would be useful to access any element in constant time
* Arrays in Haskell offer this feature
* The module Data.Array has to be imported to use arrays

Arrays in Haskell

* import Data.Array
myArray : : Array Int Char
* The indices of the array come from Int

The values stored in the array come from Char

* myArray = listArray (0,2) ['a','b','c']

Index	0	1	2
Value	'a'	'b'	'c'

Creating arrays: listArray

* listArray : :

$$
\text { Ix i } \Rightarrow(i, i) \rightarrow[e] ~->\text { Array i e }
$$

* Ix is the class of all index types, those that can be used as indices in arrays
* If Ix a, x and y are of type a and $x<y$, then the range of values between x and y is defined and finite

Creating arrays: listArray

* The class Ix includes Int, Char, (Int, Int), (Int, Int, Char) etc. but not Float or [Int]
* The first argument of listArray specifies the smallest and largest index of the array
* The second argument is the list of values to be stored in the array

Creating arrays: listArray

* listArray (1,1) [100..199] array $(1,1) \quad[(1,100)]$
* listArray ('m','p') [0,2..] array ('m','p') [('m',0),('n',2),('o',4),('p',6)]
- listArray ('b','a') [1..] array ('b','a') []
* listArray $(0,4)$ [100..] array $(0,4)[(0,100),(1,101),(2,102),(3,103),(4,104)]$
* listArray (1,3) ['a','b'] array (1,3) [(1,'a'),(2,'b'),(3,*** Exception: (Array.!): undefined array element

Creating arrays: listArray

* The value at index i of array arr is accessed using arr! i (unlike !! for list access)
- arr!i returns an exception if no value has been defined for index i
- myArr = listArray (1,3) ['a','b','c']
* myArr ! 4
*** Exception: Ix\{Integer\}.index: Index (4) out of range $((1,3))$

Creating arrays: listArray

* Haskell arrays are lazy: the whole array need not be defined before some elements are accessed
* For example, we can fill in locations 0 and 1 of arr, and define arr! i in terms of arr! $(i-1)$ and $\operatorname{arr}!(i-2)$, for i $>=2$
* listArray takes time proportional to the range of indices

First example: Fibonacci

* Recall the function fib, which computes the n-th Fibonacci number F(n)
* fib $0=1$
fib $1=1$
fib $n=f i b(n-1)+f i b(n-2)$
* Lots of recursive calls, computing the same value over and over again
* Computes $F(n)$ in unary, in effect

Fibonacci using arrays

* import Data.Array
fib :: Int -> Integer
fib $n=f i b A!n$
where
fibA :: Array Int Integer
fibA $=$ listArray (0,n) [f i \mid i <-[0..n]]
f $0=1$
f $1=1$
$f i=f i b A!(i-1)+f i b A!(i-2)$
* The fibA array is used even before it is completely defined, thanks to Haskell's laziness
* Works in $O(n)$ time

Creating arrays: array

* array :: Ix i => (i, i) -> [(i, e)] -> Array i e Creates an array from an associative list
* The associative list need not be in ascending order of indices

```
myArray = array (0,2)
    [(1,"one"),(0,"zero"),(2,"two")]
```

* The associative list may also omit elements myArray = array $(0,2)[(0, " a b c "),(2, " x y z ")]$
* array also takes time proportional to the range of indices

More on indices

* Any type a belonging to the type class Ix must provide the functions

range	$::(a, a) \rightarrow[a]$
index	$::(a, a) \rightarrow a \rightarrow$ Int
inRange	$::(a, a) \rightarrow a \rightarrow$ Bool
rangeSize	$::(a, a) \rightarrow$ Int

More on indices

* range $\quad::(a, a) \rightarrow[a]$
range gives the list of indices in the subrange defined by the bounding pair
* range $(1,2)=[1,2]$
range ('m','p') = "mnop"
range ('z','a') = ""

More on indices

* index $\quad:(a, a)$ \rightarrow a -> Int

The position of a subscript in the subrange

* index $(-50,60)(-50)=0$
index $(-50,60) 35=85$
index ('m','p') 'o' = 2
index ('m','p') 'a'
*** Exception: Ix\{Char\}.index: Index ('a')
out of range (('m', 'p'))

More on indices

* inRange $\quad::(a, a)$-> a \rightarrow Bool

Returns True if the given subscript lies in the range defined by the bounding pair

* inRange $(-50,60)(-50)=$ True
inRange $(-50,60) 35=$ True inRange ('m','p') 'o' = True
inRange ('m','p') 'a' = False

More on indices

* rangeSize $::(a, a)$-> Int

The size of the subrange defined by the bounding pair

* rangeSize $(-50,60)=111$
rangeSize ('m','p') = 4
rangeSize $(50,0)=0$

Functions on arrays

* (!) : : Ix i => Array i e -> i -> e The value at the given index in an array
* bounds :: Ix i => Array i e -> (i,i) The bounds with which an array was constructed
* indices :: Ix i => Array i e -> [i] The list of indices of an array in ascending order

Functions on arrays

* elems :: Ix i => Array i e -> [e]

The list of elements of an array in index order

* assocs :: Ix i => Array i e -> [(i,e)]

The list of associations of an array in index order

* (//) :: Ix i => Array i e -> [(i,e)] -> Array i e Update the array using the association list provided

Second example: lCSS

* Given two strings str1 and str2, find the length of the longest common subsequence of str1 and str2
* lcss "agcat" "gact" = 3
- "gat" is the subsequence
lcss "abracadabra" "bacarrat" = 6
- "bacara" is the subsequence

Second example: lcss

$\begin{array}{ll}\text { * lcss "" } \quad-\quad=0 \\ \text { lcss } \\ \text { lcss (c:cs) (d:ds) } & =0\end{array}$
| $c==d=1+\operatorname{lcss} c s d s$
| otherwise $=\max$ (lcss (c:cs) ds)
(lcss cs (d:ds))

* lcss cs ds takes time $>=2^{n}$, when cs and $d s$ are of length n
* Similar problem to fib, same recursive call made multiple times
* Store the computed values for efficiency

Icss using arrays

* We restate the recursive lcss in terms of indices
* lcss :: String -> String -> Int lcss str1 str2 = lcss' 00 where

$$
\begin{aligned}
& \mathrm{m}=\text { length } \text { str1 } \\
& \mathrm{n}=\text { length } \text { str } 2
\end{aligned}
$$

lcss' i j

$$
\mid i>=m \| j>=n=0
$$

| str1!!i == str2!!j = $1+$ lcss' $^{\prime}(i+1)(j+1)$
| otherwise $=\max \left(\right.$ lcss $\left.^{\prime} \mathrm{i}(j+1)\right)$
(lcss' (i+1) j)

Icss using arrays

* lcss : : String -> String -> Int lcss str1 str2 = lcssA! (0,0) where

$$
\begin{aligned}
& \mathrm{m}=\text { length str1 } \\
& \text { n = length str2 } \\
& \text { lcssA }=\operatorname{array}((0,0),(m, n)) \\
& {[((i, j), f i j) \mid i<-[0 . m], j<-[0 . . n]]} \\
& \text { f i j } \\
& \text { | i >=m|| j >= n = 0 } \\
& \text { | str1!!i == str2!!j=1+lcssA! }((i+1),(j+1)) \\
& \text { | otherwise }=\max (\operatorname{lcss} A!(i,(j+1))) \\
& \text { (lcssA ! (}(i+1), j))
\end{aligned}
$$

Icss using arrays

* lcss :: String -> String -> Int
lcss str1 str2 = lcssA!(0,0)
where

$$
\begin{aligned}
& m=\text { length str1 } \\
& n=\text { length } \operatorname{str} 2 \\
& \text { lcssA }=\operatorname{array}((0,0),(m, n)) \\
& \qquad[(i, j), f i \quad j) \mid i<-[0 \ldots m], j<-[0 \ldots n]]
\end{aligned}
$$

* lcssA is a two-dimensional array. Indices are of type (Int, Int)
* Drawback?? The repeated use of (!!) in accessing str1 and str2
* Solution? Turn the strings to arrays!

Icss using arrays

* lcss :: String -> String -> Int lcss str1 str2 $=$ lcssA! (0,0) where

$$
\begin{aligned}
& \mathrm{m}=\text { length str1 } \\
& \mathrm{n}=\text { length str2 } \\
& \text { ar1 }=\text { listArray (} 0, m-1 \text {) str1 } \\
& \text { ar2 }=\text { listArray }(0, n-1) \text { str2 } \\
& \text { lcssA }=\operatorname{array}((0,0),(m, n)) \\
& {[((i, j), f i \operatorname{j}) \mid i<-[0 . . m], j<-[0 . . n]]} \\
& \text { fij } \\
& |i>=m| \mid j>=n=0 \\
& \text { | ar1!i == ar2!j }=1+\operatorname{lcss} A!((i+1),(j+1)) \\
& \text { | otherwise }=\max (\operatorname{lcss} A!(i,(j+1))) \\
& \text { (lcssA! (}(i+1), j))
\end{aligned}
$$

* This program runs in time $\mathrm{O}(\mathrm{mn})$

Icss using arrays

* The first call to

Call tree for $\mathrm{m}=\mathrm{n}=3$
fi j stores the value in IcssA! (i, j)

* Subsequent calls with the same values of i and j return the value from the array
* Memoization: important technique in algorithm design

Creating arrays: accumArray

* accumArray

$$
\begin{aligned}
& \text { :: Ix i } \\
& \text { => (e -> a -> e) - accumulating function } \\
& \text {-> e } \\
& \rightarrow \text { (i,i) - bounds of the array } \\
& \text {-> }[(i, a)] \text { - association list } \\
& \text {-> Array i e - array }
\end{aligned}
$$

Creating arrays: accumArray

* accumArray (*) 1 ('a','d')

$$
\begin{gathered}
{\left[\left(' a^{\prime}, 2\right),\left(' b^{\prime}, 3\right),\left(c^{\prime}, 0\right),\left({ }^{\prime} a^{\prime}, 2\right),\left(c^{\prime}, 4\right)\right]} \\
\operatorname{array}\left('^{\prime}, ' d^{\prime}\right)\left[\left(a^{\prime}, 4\right),\left(b^{\prime}, 3\right),\left(c^{\prime}, 0\right),\left(d^{\prime}, 1\right)\right]
\end{gathered}
$$

* accumArray $(+) 0(1,3)$

$$
[(1,1),(2,1),(2,1),(1,1),(3,1),(2,1)]
$$

array $(1,3)[(1,2),(2,3),(3,1)]$

* accumArray (flip (:)) [] $(1,3)$

$$
[(1,2),(2,3),(2,8),(1,6),(3,5),(2,4)]
$$

array $(1,3)[(1,[6,2]),(2,[4,8,3]),(3,[5])]$

Creating arrays: accumArray

* accumArray

$$
\begin{aligned}
: & : \text { Ix } i \\
\Rightarrow & (e->a \rightarrow e)->e ~-> \\
& \rightarrow \text { Array } i, i)->[(i, a)]
\end{aligned}
$$

* accumArray f e (l, u) list creates an array with indices $l . . u$, in time proportional to $u-l$, provided f can be computed in constant time

Creating arrays: accumArray

* For a particular i between l and u, if (i,a1), (i,a2), ..., ($i, a n$) are all the elements with index i appearing in list, the value for i in the array is f (... (f (f e a1) a2)...) an
* The entry at index i thus accumulates (using f) all the ai associated with i in list

Linear-time sort

* Given a list of n integers, each between 0 and 9999 , sort the list
* Easy to do with arrays
* Count the number of occurrences of each $j \in\{0, \ldots, 9999\}$ in the list, storing in an array counts
* Output count[j] copies of j, j ranging from 0 to 9999

Sorting with accumArray

* $[2,3,4,1,2,5,7,8,1,3,1]$
$\Rightarrow \operatorname{zip}[2,3,4,1,2,5,7,8,1,3,1][1,1,1,1,1,1,1, \ldots]$
$=[(2,1),(3,1),(4,1),(1,1),(2,1),(5,1),(7,1),(8,1)$, $(1,1),(3,1),(1,1)]$
(repeat $1=[1,1,1,1, \ldots])$
\Rightarrow array $(1,8)[(1,3),(2,2),(3,2),(4,1),(5,1),(6,0)$,
$(7,1),(8,1)]$ - counts number of repetitions of each entry

Sorting with accumArray

* array $(1,8)[(1,3),(2,2),(3,2),(4,1),(5,1),(6,0),(7,1)$, $(8,1)]$
- counts number of repetitions of each entry
$\Rightarrow[(1,3),(2,2),(3,2),(4,1),(5,1),(6,0),(7,1),(8,1)]$
\Rightarrow replicate 31 ++ replicate 22 ++ replicate 23 ++ replicate 14 ++ replicate 15 ++ replicate 06 ++ replicate 17 ++ replicate 18
$=[1,1,1]++[2,2]++[3,3]++[4]++[5]++[]++[7]++[8]$
$=[1,1,1,2,2,3,3,4,5,7,8]$

Sorting with accumArray

* counts :: [Int] -> [(In t,Int)] counts xs = assocs (accumArray $(+) \otimes(l, u)$ (zip xs ones)
where

$$
\begin{aligned}
\text { ones } & =\text { repeat } 1 \\
\mathrm{~L} & =\text { minimum } \times s \\
\mathrm{u} & =\text { maximum } \times s
\end{aligned}
$$

* arraysort :: [Int] -> [Int] arraysort xs = concat [replicate n i | (i,n) <- es] where

$$
\text { xs }=\text { counts } x s
$$

Example: minout

* Assuming that all entries in l are distinct and nonnegative numbers, find the minimum non-negative number not in l
* minout : : [Int] -> Int minout $[3,1,2]=0$
minout $[1,5,3,0,2]=4$
minout $[11,5,3,0]=1$

Final example: minout

* minout :: [Int] -> Int minout $=$ minoutAux 0
where

$$
\begin{array}{ll}
\operatorname{minoutAux~::~Int~} & - \text { [Int] } \rightarrow \text { Int } \\
\text { minoutAux i }] & \\
\text { | i elem } l & =\text { minoutAux }(i+1) \text { l } \\
\text { | otherwise } & =\mathrm{i}
\end{array}
$$

* This program takes $\mathrm{O}\left(\mathrm{N}^{2}\right)$ time, where N is the length l (Why?)

Final example: minout

* minout :: [Int] -> Int minout $\mathrm{l}=$ minout' 0 (sort l) where

$$
\begin{array}{ll}
\text { minout' } n[] & =n \\
\text { minout' } n(x: x s) & \\
\text { | } n=x & =\text { minout' }(n+1) x s \\
\text { | otherwise } & =n
\end{array}
$$

* This program takes $\mathrm{O}(\mathrm{N} \operatorname{logN})$ time to sort, and $\mathrm{O}(\mathrm{N})$ time for minout ', where N is the length of the list

minout using arrays

* We can use arrays for an $\mathrm{O}(\mathrm{N})$ solution, where N is the length of the list
* The minimum element outside the list I has to lie between 0 and N
* Select all elements from I that are $\leq \mathrm{N}$
* Count the number of occurrences of each in I in $\mathrm{O}(\mathrm{N})$ time (using accumArray)
* Pick the smallest number with count 0

minout using arrays

* minout :: [Int] -> Int minout l = search countlist where

$$
\begin{array}{ll}
n & =\text { length } 1 \\
\text { ones } & =\text { repeat } 1
\end{array}
$$

countlist :: [(Int,Int)]
countlist $=$ assocs (accumArray (+) $0(0, n)$
(zip (filter (<=n) l) ones))
search :: [(Int,Int)] -> Int
search $((x, y): l)=$ if $(y==0)$ then x else search l

Summary

* Recursive programs can sometimes be very inefficient, recomputing the same value again and again
* Memoization is a technique that renders this process efficient, by storing values the first time they are computed
* Haskell arrays provides an efficient implementation of these techniques
* Important tool to keep in our arsenal

